Isotropic Turbulence

Strictly speaking, isotropy, i.e. independence of orientation (riktning), implies homo-
geneity, 7.e. independence of position in space. In most situations, all the averaged
properties of isotropic turbulence can also be assumed to be invariant under reflection
in space.

Notation

A number of different notations are used for the mean velocity and the fluctuating
part of the velocity in turbulent flows. In this chapter, a fluctuation, i.e. the difference
between an instantaneous physical quantity and its mean, is denoted by a lower-case
letter, e.g. u. Some alternative notations are given in the following table.

inst. mean fluct.
previous chapters u U u’
this chapter — U U
Pope (2000) U (U) u
Tennekes & Lumley u U U

The operation of forming an average will be denoted by angular brackets, (u) = 0.
A. Singlepoint and Two-Point Velocity Correlations

Singlepoint correlations
In isotropic turbulence, the singlepoint correlations satisfy,
(u?) = (v*) = (v?) while (w) = (vw) = (wu) = 0,

so that we can define u3 = <u2> = %K. ( ur >~ ug. ) In Cartesian coordinates, we can
write,

(uf) = (u3) = (u3) = uj with (urug) = (ugus) = (uguy) = 0,

1.€.
(uiwg) = ugdi; -



Two-point correlations

Two-point velocity correlations retain more information on the structure of turbulence
than singlepoint correlations.

In isotropic turbulence, which is also on average invariant under reflection in space,
there are only two independent, non-trivial, two-point velocity correlations; the longi-
tudinal covariance, f, defined by,

W2 f(r) = <u(6,t)u(ré'w,t)> — <v(6,t)v(r€y,t)> :

and the transverse covariance, g, defined by,

ud g(r) = <v(6,t)v(7’é}c,t)> = <u(6,t)u(7“€y,t)> :

The general two-point correlation, (u;(Z,t)u;(Z’,t)), must be a proper tensor func-
tion of uZ and ¥ = 7’ — ¥. Dependence on any other combination of # and &’ is ruled out
by spatial homogeneity. When the turbulence is on average invariant under reflection
in space, the two-point correlation can be written in the form,

(w (@ tyuy (@ + 7)) = ué{gm@j + () = g(r) = } .

r2
The continuity condition;

i~<“"'<"Z’t)“’f'("l_”'+7?”5)> =0 = gl =3+ f0)

Integral length scales
Using the two-point correlations, we can give the length scale, I, of the energy-bearing

eddies and the turbulence a precise definition. The integral length scales are large length
scales, A ~ [, defined by,

A = /000 f(r)ydr = ﬁ/ooo <u(6)u(:ce})> dz,
and,

Ay = /00O g(r)dr = <U—12>/OOC <v(6)v(w€w)> dz.

In isotropic turbulence the integral scales have the same order of magnitude;

o) = 5L = =g



Taylor microscales

The Taylor microscales are quite small length scales defined by,

In isotropic turbulence the Taylor microscales have the same order of magnitude;

g(r) = %r%—kf(r) = A= V2.

The Taylor microscales are intermediate length scales, I ~A>)A>n=I.

The Taylor microscale can be defined more generally, and more loosely i.e in an
order-of-magnitude fashion, in terms of the correlation of velocity gradients which dom-
inates the dissipation,

&vj (9xj )\2 )\% ’

The expressions for the dissipation which are given in the next subsection show how
these relations are satisfied in isotropic turbulence. (A physical understanding of A in
terms of a particular scale of structures in the turbulence is still difficult to achieve since
the velocity scale ur in € ~ vu2/\? is ‘wrong’ in the sense that it characterizes the large
energy-bearing eddies while v characterize the small dissipative eddies.)

The quasi-equilibrium estimate for € in high-Rer turbulence yields the scale rela-
tions:

2 3 2
U U vu A A _
e~ —1 =1 with & ~ —L — —~—~ReT1/2
lT/uT lT )\2 ZT A
In terms of the Kolomogorov microscales,
T .
1% A2 UK T

Example: The earth’s planetary boundary layer (Rep ~ 10%);

It ~1km, A~ 0,1m, n ~ 1 mm.



Viscous dissipation

In terms of the two-point velocity correlations, the mean rate of viscous dissipation of
the kinetic energy of the turbulence is,

e — 2y S% _ Ou; +3Uj Ou; \ 5 Ou; Ou;
— v 81’j N 8xj o0x; 6gjj o 6xj an
0? L

— {_ 5o (@) (i + r)>}

= v |=3u}{f"(0) + 24" (0) }|

r=0

vul vud
= 15— = 30—
N AL

In the last line the Taylor microscales, A; and \;, have been introduced.

Taylor’s hypothesis

An eddy of lengthscale ¢ will be swept past a probe in a frozen state provided,

14 L
t() > T u(l) =~ i) < U,

where U is the mean vleocity. For Rer > 1, and £ in the inertial sub-range of scales,
this condition implies that,
(en)? <« U.

Using the quasi-equilibrium estimate, € ~ u3. /I, this condition becomes,

U 3
AR S <—> lT,
ur

which is usually a fairly weak requirement.
It will be possible to construct the two-point covariance f(r) from two-time analysis
of the signal from a single probe, and thus measure the longitudinal Taylor microscale

A1, provided A itself satisfies,
U3
A< <—> I,
ur

or more generally, including lower Rer, provided,

u()\l) < U.



If the eddies of lengthscale \; can be assumed to be isotropic the rate of viscous dissi-
pation can now be calculated from e = 30vu3 /2.

Exercise (inldrningsévning)
Check that the two-point velocity correlation

(wl@ s+ 7,0) = w {53+ (70) = 9(7) 52}

r2

reduces to (u;(Z,t)u;(#,t)) = udd;; in the singlepoint limit, r — 0.

Recommended course reading

Sec. 6.3 ‘Two—point correlation’ in “Turbulent flows” by S. B. Pope, C.U.P., 2000.

Alternative recommended reading

“Turbulence”, J.O. Hinze, McGraw-Hill (1st edition, 1959; 2nd edition, 1975).
pp 53-56 & 65-66 in Landahl & Mollo-Christensen (1986).

Secs 5.1 & 5.2 in “Introduction to Turbulence” by P.A. Libby (1996).

Sec. 3.1, ‘Velocity correlations and spatial scales’, in ‘An introduction to turbulent flow’,

J. Mathieu & J. Scott, C.U.P., (2000).

Sections 19.4 and 20.2 in “Physical Fluid Dynamics” by D.J. Tritton, O.U.P., 1988.



B. The wave-number spectrum of isotropic turbulence

Two-point velocity correlations do not readily yield information on length scales which
are smaller than the Taylor micro-scales. This information is contained in correlations
of two-point velocity differences, u(Z+7,t) — @(Z,t), and in correlations of velocity
derivatives. The Fourier transform filters this information out of the two-point velocity
correlations. This is one reason for studying the wave-number spectrum.

Another reason is that the dynamical equation governing the two-point correlation
is a little bit less difficult to solve in wave-number space, i.e. after Fourier-transforming
with respect to the separation between the points, . This is particularly true of terms
which contain the pressure fluctuations, p. (The derivation of the dynamical equation
is not included in the examination for this course.)

The Fourier wave-number spectrum of homogeneous turbulence is defined by,

[e.e]

~ 1

— 00

so that the inverse formula yields the spectral representation,

(ui(.0) s (F+71) ) = / By (R, 1) exp(if.F) d%.

— 00

Remember that small lengthscales correspond to large wave numbers and, wvice versa,
large lengthscales to small wave numbers.
General basic properties

The velocity is real so [u;(Z,t)]" = u;(%,t) where [...]* denotes complex conjugation.
Now, using the definition of ®;;(%,t) above,

[(/I\)ij(’%v t)]* = #/Z<Uz(f, t) uj(f+77, t)>* eXp(—{-iﬁ.F) d37;»

- (;)S /oo <ui(f,t) uj(f+F,t)> oxp(—i (—F) .7) dF = Byj(—F,1).

— 0o
The ‘usual’ relation in Fourier analysis.

In statistically homogeneous turbulence the two—point correlation remains unchanged
when the position Z is shifted to another point #”;

<ui(f,t) uj<f+m)> - <uj(f+77,t)ui(f,t)> - <uj(f',t) ui(f’—F,t)>,



—,

where ©' = 747 so that £ = ¥’ —7. The definition of the Fourier wave-number spectrum
implies now that,

(/I\)ij(/_{, t) = u] Z t UZ(Z‘ —F, t>> eXp(_iR‘J—,’) d37:»‘
= ) wil@+7,) ) exp(~i(~7).7) dF
= (I)ji(_’?é, t)a
using K.7 = (—R).(—7) = (—K).r” where 7 = —7.

In isotropic turbulence the spectrum is independent of the distinction between K and
—K S0,

&\)ij(_ggt) = E{\)ij(/%’,t), EI\)ZJ(/_{,t) = a\)ji(/%,t), and [&\)”(/_{,t)] = &\)U(R’:,t)

The continuity condition

0
87“]

Together with the symmetry property which comes from spatial homogeneity this yields,

<uz(a: t) u; (Z+T7, t)> =0 = kP (K, t) = 0.

Kinetic energy and the singlepoint limit

K = %<u,(f,t)u,(£—|—6,t)> = / %(/I;ii(/%,t)ldgﬁ

— 00

:/7{ (R t) K2dQ, dr,

when the three-dimensional integral over wave-number space is expressed in spherical
coordinates. The mean kinetic energy of the turbulence can be written in the form,

K :/ E(k,t)dk,
0

where,

E(k,t) = 7{ %EI\J,L-Z-(/?E,t) k2dQ,



is the scalar spectral energy density of the turbulence, given here by its most general
definition. For simplicity we will use the scalar spectrum E(k,t) rather than the tensor

spectrum @ij(ﬁ, t) whenever possible.

Isotropic turbulence

The wave-number spectrum, @Zj (R, t), must be a proper tensor function of £ that sat-
isfies the continuity condition. In terms of the scalar spectral energy density, E(k,t), it
can be written in the form,

(/I;ij(/_{, f - E(k,t) {&j _ KiKj },

4mK2 K2

for turbulence that is invariant under spatial reflections. In isotropic turbulence, the
scalar spectral energy density is given by,

E(k,t) = 2762 ®4(R, ).

The Equilibrium range of wave numbers (High Rer)

When Ret > 1, the small scales are in quasi-equilibrium with the large energy-bearing
scales. In terms of the scalar wave-number, x, the small scales can be defined by,

2
—7T<<A = kA > 21 > 1,
K

i.e. k is large. This range of wave numbers is characterized by the mean rate of transfer
of energy from the large scales to the small scales, i.e. by €(t). Mathematically, for the
scalar spectral energy density, this can be expressed by,

E(k,t) = Feq (e(t),k,v) when kA > 1.
(where ‘eq.” stands for ‘equilibrium’). (The way in which time, t, appears in this

equation gives a concrete example of what is meant by quasi-equilibrium.)

The Inertial sub-range of the Equilibrium range (High Rer)

When Rep > 1, A ~ Re?r/ 477 > n  which means that there will be a substantial
range of wave numbers satisfying,

2 1
A>>?>>17 or —<</-i<<5.



In this range, 27/k > n, i.e. kn < 1, implies that viscous processes are negligible
(hence the name inertial). Mathematically, for the scalar spectral energy density, this
means that,

E(k,t) = Fko(e(t), ),

where ‘Ko’ stands for the Russian scientist Kolmogorov. Now, dimensional analysis
yields,
E(k,t) = ae?/3k7%/3,

which is often refered to as the Kolmogorov spectrum.

The Equilibrium range including the Dissipation sub-range (High Rer)

Using Fko = ae?/3x75/3

to express Fyq.,
E(k,t) = ae??™%3 f.o (kn),

in the whole equilibrium range, kA > 1, which can be divided into sub-ranges according
to;.

the inertial sub-range Kk < Kd kn =~ 0 and feq. (kn) ~ 1
the dissipation sub-range K~ Kq 2vk?FE has a maximum at xn < 1
the far dissipation sub-range x> kq feq. — 0 exponentially when x~n — oo

where kq = 27/n = Kxko.

Comparisons with measurements

The measurements required for the evaluation of three-dimensional spectra, such as
E(k), are much more demanding than those required for one-dimensional spectra. Con-
sequently comparisons with measurements are usually based on the one-dimensional
spectrum,

ud fry) = %/000 ud f(x) cos(kyx)da,

where the longitudinal covariance, f(x), was defined on page 2. This two-point correla-
tion can be constructed from two-time analysis of the signal from a single probe using
Taylor’s hypothesis.

In the inertial sub-range of the equilibrium range of lengthscales or wavenumbers,
2/3,.-5/3

U(Q)f(ﬁx) = d'¢ )



and in isotropic turbulence,

18
o = ga = 0.33 .

Measurements indicate that o = 1.5.

Dissipation rate

In terms of the scalar spectral energy density, the viscous dissipation of kinetic energy
of homogeneous turbulence is given by,

:/ 2vk? E(k,t)dk
0

Recommended course reading

Sec. 13.9, ‘Spectrum of turbulence in inertial subrange’, in “Fluid Mechanics”, by
P.K. Kundu & I.M. Cohen.

Sec. 6.5 ‘Velocity spectra’ in “Turbulent flows” by S. B. Pope, C.U.P.; 2000.

Secs 8.1-8.4 in Tennekes & Lumley (1972).

Alternative recommended reading
“A Model of Turbulence”, Leo P. Kadanoff, Physics Today, September 1995
pp 59-64 in Landahl & Mollo-Christensen (1986).

Sec. 5.2 in “Introduction to Turbulence” by P.A. Libby (1996).

Ch. 6, ‘Spectral analysis of homogeneous turbulence’, pp 239-245, in ‘An introduction
to turbulent flow’, J. Mathieu & J. Scott, C.U.P., (2000).

Sec. 6.4, ‘Consequences of isotropy’, in ‘An introduction to turbulent flow’; J. Mathieu
& J. Scott, C.U.P., (2000).

Sections 19.5 and 20.3 in “Physical Fluid Dynamics” by D.J. Tritton, O.U.P., 1988.
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C. The Dynamical Equation for the Energy Spectrum

The dynamical equation for E(k,t) in isotropic turbulence can be derived in a straight-
forward way from the dynamical equation for the two-point velocity correlation via the
dynamical equation for ®,;(K,t). See the appendix. The resulting equation is written
in the form,

o = T — 2uk’E.

If instead of isotropic turbulence we consider homogeneous turbulence under the influ-
ence of constant mean shear the equation becomes,

5 = P+ T —2wk’E,

where P(k) is the production at scalar wavenumber . In D.N.S.; P(k) is given by the
forcing.

2vk?E(k,t) is the rate of viscous dissipation of energy at scalar wave number x —
see the end of sec. B.

T(k,t) is the Fourier transform of the terms containing third-order correlations in
the two-point equation. The detailed expression for T'(k,t) is a bit complicated and
contains the third-order spectrum which has not been defined in these notes. Since
the terms containing third-order correlations in the two-point equation vanish in the
singlepoint limit, i.e. when r — 0, T'(k, t) satisfies,

/ T(k,t)dr = 0.
0

T(k,t) is the net effect on F(k,t) of the non-linear inertial spectral transfer of the mean
kinetic energy of the turbulence from large scales (small k) to small scales (large k).
Consequently, T'(k,t) is negative for small x and positive for large . In terms of the
spectral transfer of energy, e¢, the transfer out of the energy-bearing eddies (small k)
is,

Rinert
/ T(k,t)dk ~ —¢y.
0

where Kinery 1S @ wave-number, any wave-number, in the inertial sub-range of the equi-
librium range. Well into the quasi-equilibrium range, K > Kinert, We expect,

2wrE(k,t) ~ T(k,t),

so that,

/ T(k,t)dr ~ &,

is the transfer into the dissipating eddies (large ).
The equation for F(k,t) is not closed. T'(k,t) has to be modelled in terms of E(k, t)
before E(k,t) can be calculated.

11



The singlepoint limit

The singlepoint limit, » — 0, is achieved by integrating over all wave numbers;

iK = i/ Fdk = a—EdH
dt dt J, o Ot
:/ Td/{—/ wK’E dk
0 0
= 0 - e.

This is just the K-equation that was obtained for homogeneous turbulence in the absence
of mean shear in Chapter 5 of these notes.

Recommended course reading

Sec. 6.6 ‘The spectral view of the energy cascade’ in “Turbulent flows” by S. B. Pope,
C.U.P., 2000.

Alternative recommended reading

Sec. 6.3, ‘Spectral equations via correlations in physical space’; in ‘An introduction to
turbulent flow’, J. Mathieu & J. Scott, C.U.P., (2000).

Sections 20.2 and 20.3 in “Physical Fluid Dynamics” by D.J. Tritton, O.U.P., 1988.
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Appendix. The Derivation of the Dynamical Equations

The dynamical equation for E(k,t) in isotropic turbulence can be derived in a straight-
forward way from the dynamical equation for the two-point velocity correlation wvia
the dynamical equation for ®;;(%,t). The derivation of the dynamical equation is not
included in the examination for this course.

The two-point dynamical equation
In the absence of a mean flow, the fluctuating instantaneous velocity satisfies,

ou; 0 0 1 0p 0%u;

ot o M + 8_;vl<ulul>  p 0w * Y om0

Together with,

o uouEn) = (SEou@n) + (uwn Gen)

this leads straightforwardly to,

2 (uca i) -

ot
0 _ P .
 dry <u2(x1,t) U3 (&2,1) ul(zl’t)> Oy <Uz(x1,t) u;j(T2,1) Ul(l‘2,t)>
8 1 5 . 6 1 _ .
_ amll <; (CE17 t) U/] ($27 t)> - a,flfgj <;p($2, t) ’U/,L(.ﬁl, t)>

+y( A s ><ui(fl,t)uj(fg,t)>.

0x10x1;  Ox90x9
This equation is subjected to a coordinate transformation, {fl, :i"g} — {F, T }, where,

113121_" F—mg—l'l

— —

Ty = T —+ 7 r = I
so that ¥ is a ‘position’ and 7" is the separation between the two original points. The
spatial derivatives are given by

0 0 0 0 0

— and — = —

8561; 8rl + 6:171 8332[ 37‘[
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In spatially homogeneous turbulence, averaged quantities depend on 7 but not on 7

(‘8%1 = 0") so that the two-point dynamical equation becomes,

o, L

E<ui(x,t) uj(a:—l—r,t)> =
jl<uﬁfﬂu(f+?ﬂuﬂft»——jl<uCEﬂu(x+rﬂuﬂx+rﬂ>
Org \ T ’ org \ T ’

The presence of third-order velocity correlations in the dynamical equation for the
second-order correlation is an example of the general closure problem.

In the singlepoint limit, i.e. when r — 0,

0 . L . 0 . L L
8—m<Uz‘(f’3,t)uj(fﬂ+7“7t>Ul(l‘ﬂf)> — 8—m<ui(a3,t)uj(x+r,t)ul(x+r,t)> — 0.

(The Fourier transform of this expression is the rate of transfer of energy through
spectral space, T'(k,t), and the fact that it vanishes in the singlepoint limit leads to
Jo Tdr =0.)

Exercises (inldrningsévningar)

Show that <p‘1p(a—:’, t) u;(d+r, t)> = 0 in isotropic turbulence.

Show that, in homogeneous turbulence, the contracted forms of the pressure terms
vanish;

1
aii <;p(§:’,t) ui(f—i—f",t)> = 0,
and,
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The dynamical equation for the energy spectrum

In isotropic turbulence, the energy spectrum, E, can be written in terms of the two-point
velocity correlation in the form,

~ 2rK? [
E(k,t) = 27r%®;(R,t) = (27233/ (ui (Z,t) us (T+7,1)) exp(—ik.7) Ik,

— o0

so the dynamical equation governing E can be obtained by first contracting (i = j =
sum) and then Fourier transforming the equation for the two-point velocity correlation,

2 [e9)
%E = (2;7’%)3/00 %(ui(f,t)ui(f—kf’,t)) exp(—iR.7) A% .

The resulting equation is written in the form,

E = T — ZVHQE.

The detailed expression for T'(k,t) is a bit complicated and contains the third-order
spectrum which has not been defined in these notes.
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